论文标题

通过超级副本的乘数理想表征

A characterization of multiplier ideals via ultraproducts

论文作者

Yamaguchi, Tatsuki

论文摘要

在本文中,使用Ultra-Frobenii,我们介绍了Schoutens的非标准紧密闭合,超紧密闭合的变体,这是本地域$ r $的理想,本质上是$ \ mathbb {c} $的有限类型的理想。我们证明,超测试的理想$τ_{\ rm u}(r,\ m athfrak {a}^t)$,$ r $的所有超紧密闭合关系的nihihilator理想,与乘数$ \ \ \ m nructer $ \ m nrucation $ $ \ mathcal $ \ mathcal profiel $ \ nrucation $ rathorname $ nistrage $ ragatigrak $ iS $ iS $ $ \ mathbb {q} $ - Gorenstein。作为应用,我们研究了纯环扩展条件下乘数理想的行为。

In this paper, using ultra-Frobenii, we introduce a variant of Schoutens' non-standard tight closure, ultra-tight closure, on ideals of a local domain $R$ essentially of finite type over $\mathbb{C}$. We prove that the ultra-test ideal $τ_{\rm u}(R,\mathfrak{a}^t)$, the annihilator ideal of all ultra-tight closure relations of $R$, coincides with the multiplier ideal $\mathcal{J}(\operatorname{Spec} R,\mathfrak{a}^t)$ if $R$ is normal $\mathbb{Q}$-Gorenstein. As an application, we study a behavior of multiplier ideals under pure ring extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源