论文标题

临界2D随机热流不是高斯乘法混乱

The critical 2d Stochastic Heat Flow is not a Gaussian Multiplicative Chaos

论文作者

Caravenna, Francesco, Sun, Rongfeng, Zygouras, Nikos

论文摘要

关键的$ 2D $随机热流(SHF)是$ {\ Mathbb r}^2 $的随机度量的随机过程,该过程最近在[CSZ23]中构建。我们表明,这个过程属于高斯乘法混乱(GMC)的类别,从某种意义上说,它不能被实现为(一般性)高斯领域的指数。我们通过在SHF的时刻进行严格的下限来实现这一目标。

The critical $2d$ Stochastic Heat Flow (SHF) is a stochastic process of random measures on ${\mathbb R}^2$, recently constructed in [CSZ23]. We show that this process falls outside the class of Gaussian Multiplicative Chaos (GMC), in the sense that it cannot be realised as the exponential of a (generalised) Gaussian field. We achieve this by deriving strict lower bounds on the moments of the SHF that are of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源