论文标题
高斯扩散的有损压缩
Lossy Compression with Gaussian Diffusion
论文作者
论文摘要
我们考虑一种基于无条件扩散生成模型的新型有损压缩方法,我们称之为DIFFC。与依靠转换编码和量化来限制传输信息的现代压缩方案不同,DIFFC依赖于高斯噪声损坏的像素的有效通信。我们实施了概念证明,并发现尽管缺乏编码器变换,但它的效果非常出色,超过了Imagenet 64x64上最先进的生成压缩方法。 DIFFC仅使用单个模型在任意比特率上编码和DENOISE损坏的像素。该方法进一步提供了对渐进编码的支持,即从部分位流进行解码。我们执行速率分析,以更深入地了解其性能,从而为多元高斯数据以及一般分布的理论界限提供分析结果。此外,我们证明,基于流动的重建在高比特率下的祖先采样可实现3 dB的增长。
We consider a novel lossy compression approach based on unconditional diffusion generative models, which we call DiffC. Unlike modern compression schemes which rely on transform coding and quantization to restrict the transmitted information, DiffC relies on the efficient communication of pixels corrupted by Gaussian noise. We implement a proof of concept and find that it works surprisingly well despite the lack of an encoder transform, outperforming the state-of-the-art generative compression method HiFiC on ImageNet 64x64. DiffC only uses a single model to encode and denoise corrupted pixels at arbitrary bitrates. The approach further provides support for progressive coding, that is, decoding from partial bit streams. We perform a rate-distortion analysis to gain a deeper understanding of its performance, providing analytical results for multivariate Gaussian data as well as theoretic bounds for general distributions. Furthermore, we prove that a flow-based reconstruction achieves a 3 dB gain over ancestral sampling at high bitrates.