论文标题
pólya-szegő不平等,用于平滑重排
The Pólya-Szegő inequality for smoothing rearrangements
论文作者
论文摘要
pólya-szegő不平等的基本版本指出,如果$φ$ -dirichlet Energy是一个$φ(\ | \ | \ nabla f \ |)$的积分 - 适当函数$ f \ in \ in \ in \ MathCal { $ \ mathbb {r}^n $消失在无穷大,在对称减少重排下不会增加。这一事实以及适用于极化的变体以及对Steiner和某些其他重排的变体都有许多应用。事实证明,非常通用的不平等版本可容纳所有平滑重排,那些不增加功能连续性的模量。结果涵盖了先前考虑的所有主要功能:Lipschitz函数$ f \ in \ Mathcal {v}(\ Mathbb {r}^n)$,functions $ f \ in W^{1,p}(\ Mathbb {r} p <\ infty $和$φ(t)= t^p $),功能$ f \ in W^{1,1} _ {loc}(\ Mathbb {r}^n)\ cap \ cap \ mathcal {v}(\ mathbb {r}^n)$。此外,建立了这些结果的各向异性版本,其中建立了单位球的作用,由包含起源的凸形体发挥作用。综上所述,结果将Pólya-Szegő不平等的所有基本版本汇总在一起,以前在一个共同且非常通用的框架下可用。
A basic version of the Pólya-Szegő inequality states that if $Φ$ is a Young function, the $Φ$-Dirichlet energy -- the integral of $Φ(\|\nabla f\|)$ -- of a suitable function $f\in \mathcal{V}(\mathbb{R}^n)$, the class of nonnegative measurable functions on $\mathbb{R}^n$ that vanish at infinity, does not increase under symmetric decreasing rearrangement. This fact, along with variants that apply to polarizations and to Steiner and certain other rearrangements, has numerous applications. Very general versions of the inequality are proved that hold for all smoothing rearrangements, those that do not increase the modulus of continuity of functions. The results cover all the main classes of functions previously considered: Lipschitz functions $f\in \mathcal{V}(\mathbb{R}^n)$, functions $f\in W^{1,p}(\mathbb{R}^n)\cap\mathcal{V}(\mathbb{R}^n)$ (when $1\le p<\infty$ and $Φ(t)=t^p$), and functions $f\in W^{1,1}_{loc}(\mathbb{R}^n)\cap\mathcal{V}(\mathbb{R}^n)$. In addition, anisotropic versions of these results, in which the role of the unit ball is played by a convex body containing the origin in its interior, are established. Taken together, the results bring together all the basic versions of the Pólya-Szegő inequality previously available under a common and very general framework.