论文标题

多目标定向优化的进化算法和深入的增强学习的杂交

Hybridization of evolutionary algorithm and deep reinforcement learning for multi-objective orienteering optimization

论文作者

Liu, Wei, Wang, Rui, Zhang, Tao, Li, Kaiwen, Li, Wenhua, Ishibuchi, Hisao

论文摘要

多目标定向急救问题(MO-OPS)是经典的多目标路由问题,并且在过去几十年中受到了很多关注。这项研究旨在通过问题分解框架解决MO-OPS,即MO-OP分解为多目标背包问题(MOKP)和旅行推销员问题(TSP)。然后,MOKP和TSP分别通过多目标进化算法(MOEA)和深钢筋学习(DRL)方法来解决。虽然MOEA模块用于选择城市,但DRL模块是为这些城市计划的哈密顿路径。这两个模块的迭代使用将人口驱动到Mo-ops的帕累托阵线。在各种类型的MO-OP实例上,将提出方法与NSGA-II和NSGA-III进行了比较。实验结果表明,我们的方法几乎在所有测试实例上表现出最佳性能,并且表现出强大的概括能力。

Multi-objective orienteering problems (MO-OPs) are classical multi-objective routing problems and have received a lot of attention in the past decades. This study seeks to solve MO-OPs through a problem-decomposition framework, that is, a MO-OP is decomposed into a multi-objective knapsack problem (MOKP) and a travelling salesman problem (TSP). The MOKP and TSP are then solved by a multi-objective evolutionary algorithm (MOEA) and a deep reinforcement learning (DRL) method, respectively. While the MOEA module is for selecting cities, the DRL module is for planning a Hamiltonian path for these cities. An iterative use of these two modules drives the population towards the Pareto front of MO-OPs. The effectiveness of the proposed method is compared against NSGA-II and NSGA-III on various types of MO-OP instances. Experimental results show that our method exhibits the best performance on almost all the test instances, and has shown strong generalization ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源