论文标题
valleytronic van der waals双层中的层偏振异常大厅效应
Layer-Polarized Anomalous Hall Effect in Valleytronic van der Waals Bilayers
论文作者
论文摘要
从浆果曲率和自由度层之间的耦合衍生而成的层偏振异常霍尔效应(LP-AHE)对于基本物理和设备应用都很重要。但是,当前的研究范式植根于拓扑系统,使这种现象却稀缺。在这里,通过模型分析,我们提出了一种替代方法,但通用机制可以通过层间滑动实现Valleytronic van der waals双层中的LP-AHE。平面外铁电性与A型抗fiferromagnetism之间的相互作用产生了层锁定的浆果曲率,从而在双层系统中持久的LP-AHE。 LP-AHE可以与滑动铁电性强烈结合,以使铁电可控制和可逆。该机理在一系列真实的valleytronic材料中得到了证明,包括双层VSI2P4,VSI2N4,FECL2,RUBR2和VCLBR。新的机制和现象为实现LP-AHE并探索其在电子产品中的应用提供了一个重要的新方向。
Layer-polarized anomalous Hall effect (LP-AHE), derived from the coupling between Berry curvature and layer degree of freedom, is of importance for both fundamental physics and device applications. Nonetheless, the current research paradigm is rooted in topological systems, rendering such phenomenon rather scarce. Here, through model analysis, we propose an alternative, but general mechanism to realize the LP-AHE in valleytronic van der Waals bilayers by interlayer sliding. The interaction between the out-of-plane ferroelectricity and A-type antiferromagnetism gives rise to the layer-locked Berry curvature and thus the long-sought LP-AHE in the bilayer systems. The LP-AHE can be strongly coupled with sliding ferroelectricity, to enable ferroelectrically controllable and reversible. The mechanism is demonstrated in a series of real valleytronic materials, including bilayer VSi2P4, VSi2N4, FeCl2, RuBr2 and VClBr. The new mechanism and phenomena provide a significant new direction to realize LP-AHE and explore its application in electronics.