论文标题
超级离子热电AG2TE中可再现高ZT的协同方法
Synergistic approach towards reproducible high zT in superionic thermoelectric Ag2Te
论文作者
论文摘要
最近,特征是新型的“声子 - 液体电子晶体”概念的超级会议热电学因其超低导热率和高数字(ZT)而引起了极大的关注。但是,它们的高ZT通常是在超级离子阶段深处获得的,例如,在Cu $ _2 $ x(x:chalcogen atom)家族中,超级离子过渡接近400〜k。在这样的高温下,在电场或温度梯度下,金属离子的液体流动流是热电设备的工作不可或缺的,这会导致装置降解。因此,为了利用超级离子热电学的全部潜力,因此,在金属离子扩散不是问题的低温下,必须在低温下达到高ZT。在这里,我们提出了一条新颖的全房间温度途径,以制造具有高度可重现的热电特性的100 \%密度,纳米结构的Ag $ _2 $ te,而在570〜K处的高ZT为1.2,即仅在其超级离子过渡之上,仅150〜K。样品显示出较大的粒径分布,范围从几nm到几美元。这种层次纳米结构被证明可抑制Ag $ _2 $ TE的导热率,而不是声子 - 液体 - 液体 - 晶体限制到超低值,从而导致INGOT样品的ZT中ZT中的87 \%显着增强。这些值取代了先前报道的任何AG $ _2 $ TE的ZT。我们的结果得到了电子和热性能的第一原理密度功能理论的计算。
Recently, the superionic thermoelectrics, which typify the novel `phonon-liquid electron-crystal' concept, have attracted enormous attention due to their ultralow thermal conductivity and high figure-of-merit (zT). However, their high zT is generally obtained deep inside the superionic phase, e.g., near 1000~K in the Cu$_2$X (X: chalcogen atom) family where the superionic transition is close to 400~K. At such high temperatures, the liquid-like flow of the metal ions under an electric field or a temperature gradient, both of which are integral to the working of a thermoelectric device, results in device degradation. To harness the full potential of the superionic thermoelectrics, it is, therefore, necessary to reach high zT at low temperatures where the metal-ion diffusion is not an issue. Here, we present a novel all-room-temperature route to fabricate 100\% dense, nanostructured Ag$_2$Te with highly reproducible thermoelectric properties and a high zT of 1.2 at 570~K, i.e., merely 150~K above its superionic transition. The samples show a broad particle-size distribution ranging from a few nm to a few $μ$m. This hierarchical nanostructuring is shown to suppress the thermal conductivity of Ag$_2$Te beyond the phonon-liquid electron-crystal limit to ultralow values, leading to a remarkable enhancement of 87\% in the zT over that of the ingot sample. These values supersede the zT of any Ag$_2$Te previously reported. Our results are supported by first-principles density functional theory calculations of the electronic and thermal properties.