论文标题

部分可观测时空混沌系统的无模型预测

Topological photonics by breaking the degeneracy of line node singularities in semimetal-like photonic crystals

论文作者

Börm, Steffen, Davoodi, Fatemeh, Köhl, Ralf, Talebi, Nahid

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Degeneracy is an omnipresent phenomenon in various physical systems, which has its roots in the preservation of geometrical symmetry. In electronic and photonic crystal systems, very often this degeneracy can be broken by virtue of strong interactions between photonic modes of the same energy, where the level repulsion and the hybridization between modes causes the emergence of photonic bandgaps. However, most often this phenomenon does not lead to a complete and inverted bandgap formation over the entire Brillouin zone. Here, by systematically breaking the symmetry of a two-dimensional square photonic crystal, we investigate the formation of Dirac points, line node singularities, and inverted bandgaps. The formation of this complete bandgap is due to the level repulsion between degenerate modes along the line nodes of a semimetal-like photonic crystal, over the entire Brillouin zone. Our numerical experimentations are performed by a home-build numerical framework based on a multigrid finite element method. The developed numerical toolbox and our observations pave the way towards designing complete bandgap photonic crystals and exploring the role of symmetry on the optical behaviour of even more complicated orders in photonic crystal systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源