论文标题
零稳定性很好地预测了卷积神经网络的性能
Zero Stability Well Predicts Performance of Convolutional Neural Networks
论文作者
论文摘要
哪种卷积神经网络(CNN)结构表现良好的问题令人着迷。在这项工作中,我们通过连接零稳定性和模型性能,再通过一步向答案转向答案。具体而言,我们发现,如果普通微分方程的离散求解器为零稳定,则与该求解器相对应的CNN表现良好。我们首先在深度学习的背景下对零稳定性进行解释,然后在不同的零稳定情况下研究现有的一阶和二阶CNN的性能。基于初步观察,我们为构建CNN提供了高阶离散化,然后提出了一个零稳定的网络(ZeroSNet)。为了确保零件的零稳定性,我们首先推断出满足一致性条件的结构,然后给出无训练参数的零稳定区域。通过分析特征方程的根,我们从理论上获得了特征图的最佳系数。从经验上讲,我们从三个方面介绍了结果:我们提供了不同数据集上不同深度的广泛经验证据,以表明特征方程的根源的模量是需要历史特征的CNN的键;我们的实验表明,零值优于基于高级离散化的现有CNN。零件在输入上显示出更好的鲁棒性。源代码可在\ url {https://github.com/longjin-lab/zerosnet}中获得。
The question of what kind of convolutional neural network (CNN) structure performs well is fascinating. In this work, we move toward the answer with one more step by connecting zero stability and model performance. Specifically, we found that if a discrete solver of an ordinary differential equation is zero stable, the CNN corresponding to that solver performs well. We first give the interpretation of zero stability in the context of deep learning and then investigate the performance of existing first- and second-order CNNs under different zero-stable circumstances. Based on the preliminary observation, we provide a higher-order discretization to construct CNNs and then propose a zero-stable network (ZeroSNet). To guarantee zero stability of the ZeroSNet, we first deduce a structure that meets consistency conditions and then give a zero stable region of a training-free parameter. By analyzing the roots of a characteristic equation, we theoretically obtain the optimal coefficients of feature maps. Empirically, we present our results from three aspects: We provide extensive empirical evidence of different depth on different datasets to show that the moduli of the characteristic equation's roots are the keys for the performance of CNNs that require historical features; Our experiments show that ZeroSNet outperforms existing CNNs which is based on high-order discretization; ZeroSNets show better robustness against noises on the input. The source code is available at \url{https://github.com/LongJin-lab/ZeroSNet}.