论文标题
Langevin Dynamics的过渡和山坡关系的统计估计
Estimation of statistics of transitions and Hill relation for Langevin dynamics
论文作者
论文摘要
在分子动力学中,过渡的统计数据(例如平均过渡时间)是宏观可观察的,它们提供了有关基础显微镜随机过程的重要动态信息。在长时间尺度上使用微观轨迹的模拟进行直接估计通常在亚稳态情况下在计算上是可悲的。为了克服这个问题,几种数值方法依赖于潜在的理论身份,有时归因于计算统计物理垃圾中的丘陵,该杂物在基础过程进入稳定集的配置序列的不变度度量方面表达了过渡的统计。然后,这种身份的使用允许使用罕见的事件采样问题替换长时间的仿真问题,为此有效算法可用。在本文中,我们严格分析了通过Langevin Dynamics建模的分子系统的方法。我们的主要贡献是双重的。首先,我们证明了在正面哈里斯复发链的相当笼统的背景下的山丘关系,并表明该公式适用于兰格文动力学。其次,我们提供了涉及山丘关系的不变度度量的明确表达,并描述了基本的精确模拟程序。总体而言,这产生了一种简单而完整的数值方法来估计过渡的统计数据。
In molecular dynamics, statistics of transitions, such as the mean transition time, are macroscopic observables which provide important dynamical information on the underlying microscopic stochastic process. A direct estimation using simulations of microscopic trajectories over long time scales is typically computationally intractable in metastable situations. To overcome this issue, several numerical methods rely on a potential-theoretic identity, sometimes attributed to Hill in the computational statistical physics litterature, which expresses statistics of transitions in terms of the invariant measure of the sequence of configurations by which the underlying process enters metastable sets. The use of this identity then allows to replace the long time simulation problem with a rare event sampling problem, for which efficient algorithms are available. In this article, we rigorously analyse such a method for molecular systems modelled by the Langevin dynamics. Our main contributions are twofold. First, we prove the Hill relation in the fairly general context of positive Harris recurrent chains, and show that this formula applies to the Langevin dynamics. Second, we provide an explicit expression of the invariant measure involved in the Hill relation, and describe an elementary exact simulation procedure. Overall, this yields a simple and complete numerical method to estimate statistics of transitions.