论文标题

您需要几次活动?使用稀疏但变化的像素的基于事件的视觉位置识别

How Many Events do You Need? Event-based Visual Place Recognition Using Sparse But Varying Pixels

论文作者

Fischer, Tobias, Milford, Michael

论文摘要

事件摄像机由于理想的特征,例如高动态范围,低延迟,几乎没有运动模糊和高能量效率而继续引起兴趣。从这些特征中受益的潜在应用之一在于在视觉位置识别机器人本地化,即将查询观察值与数据库中的相应参考位置匹配。在这封信中,我们探讨了一小部分像素(在数十个或数百个)中的事件流的独特性。我们证明,当使用参考集中显示大变化的像素时,积累到事件框架中的那些像素位置的事件数量的绝对差异就足够了。使用如此稀疏(图像坐标),但是(每个像素位置的事件数量)有变化,可以使位置估计值的频繁和计算廉价更新。此外,当事件帧包含恒定事件的数量时,我们的方法充分利用了感官流的事件驱动性质,并显示出对速度变化的有希望的鲁棒性。我们在户外驾驶场景中评估了在布里斯班 - 事件-VPR数据集上的建议方法,以及新贡献的室内QCR-Event-VPR数据集,该数据集用安装在移动机器人平台上的Davis346相机捕获。我们的结果表明,与这些数据集上的几种基线方法相比,我们的方法可实现竞争性能,并且特别适合于计算和能源约束的平台,例如星际漫游者。

Event cameras continue to attract interest due to desirable characteristics such as high dynamic range, low latency, virtually no motion blur, and high energy efficiency. One of the potential applications that would benefit from these characteristics lies in visual place recognition for robot localization, i.e. matching a query observation to the corresponding reference place in the database. In this letter, we explore the distinctiveness of event streams from a small subset of pixels (in the tens or hundreds). We demonstrate that the absolute difference in the number of events at those pixel locations accumulated into event frames can be sufficient for the place recognition task, when pixels that display large variations in the reference set are used. Using such sparse (over image coordinates) but varying (variance over the number of events per pixel location) pixels enables frequent and computationally cheap updates of the location estimates. Furthermore, when event frames contain a constant number of events, our method takes full advantage of the event-driven nature of the sensory stream and displays promising robustness to changes in velocity. We evaluate our proposed approach on the Brisbane-Event-VPR dataset in an outdoor driving scenario, as well as the newly contributed indoor QCR-Event-VPR dataset that was captured with a DAVIS346 camera mounted on a mobile robotic platform. Our results show that our approach achieves competitive performance when compared to several baseline methods on those datasets, and is particularly well suited for compute- and energy-constrained platforms such as interplanetary rovers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源