论文标题

AS Introvae:对抗相似性距离使稳健的静脉

AS-IntroVAE: Adversarial Similarity Distance Makes Robust IntroVAE

论文作者

Lu, Changjie, Zheng, Shen, Wang, Zirui, Dib, Omar, Gupta, Gaurav

论文摘要

最近,诸如Interovae和S-Introvae之类的内省模型在图像生成和重建任务方面表现出色。内省模型的主要特征是对VAE的对抗性学习,编码器试图区分真实和假(即合成)图像。但是,由于有效度量标准无法评估真实图像和假图像之间的差异,因此仍然存在后倒塌和消失的梯度问题,从而降低了合成图像的保真度。在本文中,我们提出了一种新的静脉内变体,称为对抗相似性距离内省变化自动编码器(AS-Introvae)。我们理论上分析了消失的梯度问题,并使用2-Wasserstein距离和内核技巧构建了一个新的对抗相似性距离(AS-cer)。随着重量退火,AS-Introvae能够产生稳定和高质量的图像。通过每批次尝试转换图像,以使其更好地适合潜在空间中的先前分布,从而解决了后塌陷问题。与每个图像方法相比,该策略促进了潜在空间中更多样化的分布,从而使我们的模型能够产生巨大的多样性图像。基准数据集的全面实验证明了AS-Introvae对图像生成和重建任务的有效性。

Recently, introspective models like IntroVAE and S-IntroVAE have excelled in image generation and reconstruction tasks. The principal characteristic of introspective models is the adversarial learning of VAE, where the encoder attempts to distinguish between the real and the fake (i.e., synthesized) images. However, due to the unavailability of an effective metric to evaluate the difference between the real and the fake images, the posterior collapse and the vanishing gradient problem still exist, reducing the fidelity of the synthesized images. In this paper, we propose a new variation of IntroVAE called Adversarial Similarity Distance Introspective Variational Autoencoder (AS-IntroVAE). We theoretically analyze the vanishing gradient problem and construct a new Adversarial Similarity Distance (AS-Distance) using the 2-Wasserstein distance and the kernel trick. With weight annealing on AS-Distance and KL-Divergence, the AS-IntroVAE are able to generate stable and high-quality images. The posterior collapse problem is addressed by making per-batch attempts to transform the image so that it better fits the prior distribution in the latent space. Compared with the per-image approach, this strategy fosters more diverse distributions in the latent space, allowing our model to produce images of great diversity. Comprehensive experiments on benchmark datasets demonstrate the effectiveness of AS-IntroVAE on image generation and reconstruction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源