论文标题
基于卷积神经网络的部分面部检测
Convolutional Neural Network Based Partial Face Detection
论文作者
论文摘要
由于对人工智能的大量解释,我们日常生活的各个领域都使用了机器学习技术。在世界上,在许多情况下,在可能发生的情况下可能会预防简单的犯罪或找到对此负责的人。面孔是我们拥有的一个独特特征,并且可以在许多其他物种中很容易区分。但不仅不同的物种,它在确定与我们同一物种的人的人类中也起着重要作用。关于这个关键功能,如今最常发生一个问题。当相机指向时,它无法检测到一个人的脸,并且变成了不良的形象。另一方面,在安装了抢劫并安装了安全摄像机的地方,由于较低的摄像头,抢劫犯的身份几乎无法区分。但是,仅制作出出色的算法来工作和检测面部就会降低硬件的成本,而专注于该领域的成本并不多。面部识别,小部件控制等,可以通过正确检测面部来完成。这项研究旨在创建和增强正确识别面孔的机器学习模型。总共有627个数据是从孟加拉国不同的四个天使的面孔中收集的。在这项工作中,CNN,Harr Cascade,Cascaded CNN,Deep CNN和MTCNN是实施的五种机器学习方法,以获得我们数据集的最佳准确性。创建和运行模型后,多任务卷积神经网络(MTCNN)通过培训数据而不是其他机器学习模型实现了96.2%的最佳模型精度。
Due to the massive explanation of artificial intelligence, machine learning technology is being used in various areas of our day-to-day life. In the world, there are a lot of scenarios where a simple crime can be prevented before it may even happen or find the person responsible for it. A face is one distinctive feature that we have and can differentiate easily among many other species. But not just different species, it also plays a significant role in determining someone from the same species as us, humans. Regarding this critical feature, a single problem occurs most often nowadays. When the camera is pointed, it cannot detect a person's face, and it becomes a poor image. On the other hand, where there was a robbery and a security camera installed, the robber's identity is almost indistinguishable due to the low-quality camera. But just making an excellent algorithm to work and detecting a face reduces the cost of hardware, and it doesn't cost that much to focus on that area. Facial recognition, widget control, and such can be done by detecting the face correctly. This study aims to create and enhance a machine learning model that correctly recognizes faces. Total 627 Data have been collected from different Bangladeshi people's faces on four angels. In this work, CNN, Harr Cascade, Cascaded CNN, Deep CNN & MTCNN are these five machine learning approaches implemented to get the best accuracy of our dataset. After creating and running the model, Multi-Task Convolutional Neural Network (MTCNN) achieved 96.2% best model accuracy with training data rather than other machine learning models.