论文标题

对电源流模型应用的Emden-Fowler类型方程的渐近分析

Asymptotic analysis of Emden-Fowler type equation with an application to power flow models

论文作者

Christianen, M. H. M., Janssen, A. J. E. M., Vlasiou, M., Zwart, B.

论文摘要

Emden-Fowler类型方程是在许多领域中出现的非线性微分方程,例如数学物理学,天体物理学和化学。在本文中,我们对特定的Emden-Fowler类型方程进行了渐近分析,该方程在排队理论上下文中出现,作为在众所周知的功率流模型下的电压近似。因此,我们将Emden-Fowler类型方程放在电气工程的背景下。我们得出了这种特定的福音类型方程的连续解的性能,并研究了其离散类似物的渐近行为。我们得出的结论是,离散的模拟具有与我们考虑的经典连续Emden-Fowler类型方程相同的渐近行为。

Emden-Fowler type equations are nonlinear differential equations that appear in many fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of a specific Emden-Fowler type equation that emerges in a queuing theory context as an approximation of voltages under a well-known power flow model. Thus, we place Emden-Fowler type equations in the context of electrical engineering. We derive properties of the continuous solution of this specific Emden-Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the same asymptotic behavior as the classical continuous Emden-Fowler type equation that we consider.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源