论文标题
泵送密码安全!评估和增强基于风险的大型在线服务的基于风险的身份验证
Pump Up Password Security! Evaluating and Enhancing Risk-Based Authentication on a Real-World Large-Scale Online Service
论文作者
论文摘要
基于风险的身份验证(RBA)旨在保护用户免受涉及被盗密码的攻击。 RBA在登录过程中监视功能,并在特征值与先前观察到的值广泛不同时进行重新认证。各种国家安全组织建议使用它,用户认为它比等效的两因素身份验证更可用和同样安全。尽管如此,RBA仍然只有很少的在线服务使用。这样做的原因包括缺乏有关RBA属性,实施和配置的经过验证的开放资源。这有效地阻碍了RBA研究,开发和采用进展。 为了缩小这一差距,我们提供了关于现实世界大规模在线服务的首次长期RBA分析。我们收集了330万用户的功能数据和超过一年的3130万登录尝试。基于数据,我们提供(i)研究RBA的现实世界特征及其配置和增强以平衡可用性,安全性和隐私性,(ii)一种基于机器学习的RBA参数优化方法,以支持管理员找到最佳配置,以找到其自身用例的最佳配置,以替换综合时间和替代综合的概述,以替换综合概述,并提高综合的概述,并提高了综合的概述,并提高了综合的概述,并替换了综合的概述,并替换了综合的概述,并替换了综合的概述。旨在重现这项研究并培养未来的澳大利亚储备研究。我们的结果提供了选择优化的RBA配置的见解,因此仅几次登录后,用户从RBA中获利。开放数据集使研究人员能够在野外研究,测试和改善RBA的广泛部署。
Risk-based authentication (RBA) aims to protect users against attacks involving stolen passwords. RBA monitors features during login, and requests re-authentication when feature values widely differ from previously observed ones. It is recommended by various national security organizations, and users perceive it more usable and equally secure than equivalent two-factor authentication. Despite that, RBA is still only used by very few online services. Reasons for this include a lack of validated open resources on RBA properties, implementation, and configuration. This effectively hinders the RBA research, development, and adoption progress. To close this gap, we provide the first long-term RBA analysis on a real-world large-scale online service. We collected feature data of 3.3 million users and 31.3 million login attempts over more than one year. Based on the data, we provide (i) studies on RBA's real-world characteristics, and its configurations and enhancements to balance usability, security, and privacy, (ii) a machine learning based RBA parameter optimization method to support administrators finding an optimal configuration for their own use case scenario, (iii) an evaluation of the round-trip time feature's potential to replace the IP address for enhanced user privacy, and (iv) a synthesized RBA data set to reproduce this research and to foster future RBA research. Our results provide insights on selecting an optimized RBA configuration so that users profit from RBA after just a few logins. The open data set enables researchers to study, test, and improve RBA for widespread deployment in the wild.