论文标题
高尔夫球手:带蒙版目标调节MNM网络的轨迹预测
Golfer: Trajectory Prediction with Masked Goal Conditioning MnM Network
论文作者
论文摘要
变形金刚在NLP和计算机视觉上实现了突破,最近开始在自动驾驶汽车(AV)的轨迹预测中表现出有希望的表现。如何有效地对自我代理与其他道路和动态对象之间的交互关系建模仍然对标准注意模块仍然具有挑战性。在这项工作中,我们提出了一个类似变压器的架构模块MNM网络,该网络配备了新型掩盖的目标调节训练程序,用于AV轨迹预测。最终的模型(名为Golfer)取得了最先进的性能,在2022 Waymo Open DataSet Motion Predict挑战中赢得了第二名,并根据Minade排名第一。
Transformers have enabled breakthroughs in NLP and computer vision, and have recently began to show promising performance in trajectory prediction for Autonomous Vehicle (AV). How to efficiently model the interactive relationships between the ego agent and other road and dynamic objects remains challenging for the standard attention module. In this work we propose a general Transformer-like architectural module MnM network equipped with novel masked goal conditioning training procedures for AV trajectory prediction. The resulted model, named golfer, achieves state-of-the-art performance, winning the 2nd place in the 2022 Waymo Open Dataset Motion Prediction Challenge and ranked 1st place according to minADE.