论文标题

定制的对话推荐系统

Customized Conversational Recommender Systems

论文作者

Li, Shuokai, Zhu, Yongchun, Xie, Ruobing, Tang, Zhenwei, Zhang, Zhao, Zhuang, Fuzhen, He, Qing, Xiong, Hui

论文摘要

会话推荐系统(CRS)旨在捕获用户的当前意图,并通过实时多转交流互动提供建议。作为人机交互式系统,CRS必须改善用户体验。但是,大多数CRS方法忽略了用户体验的重要性。在本文中,我们提出了CRS改善用户体验的两个关键点:(1)像人类一样说话,人类可以根据当前的对话背景与不同的样式说话。 (2)识别精细粒度的意图,即使对于相同的话语,不同的用户也具有多种良好的意图,这与用户固有的偏好有关。根据观察结果,我们提出了一种新颖的CRS模型,即创建的自定义对话推荐系统(CCRS),该系统从三个角度自定义了用户的CRS模型。对于类似人类的对话服务,我们提出了多式对话响应生成器,该响应响应生成器选择上下文感知的语音风格来产生发言。为了提供个性化的建议,我们在用户固有的偏好的指导下从对话上下文中提取用户当前的细粒度意图。最后,为了自定义每个用户的模型参数,我们从元学习的角度训练模型。广泛的实验和一系列分析表明,我们的CCR在推荐和对话服务上的优势。

Conversational recommender systems (CRS) aim to capture user's current intentions and provide recommendations through real-time multi-turn conversational interactions. As a human-machine interactive system, it is essential for CRS to improve the user experience. However, most CRS methods neglect the importance of user experience. In this paper, we propose two key points for CRS to improve the user experience: (1) Speaking like a human, human can speak with different styles according to the current dialogue context. (2) Identifying fine-grained intentions, even for the same utterance, different users have diverse finegrained intentions, which are related to users' inherent preference. Based on the observations, we propose a novel CRS model, coined Customized Conversational Recommender System (CCRS), which customizes CRS model for users from three perspectives. For human-like dialogue services, we propose multi-style dialogue response generator which selects context-aware speaking style for utterance generation. To provide personalized recommendations, we extract user's current fine-grained intentions from dialogue context with the guidance of user's inherent preferences. Finally, to customize the model parameters for each user, we train the model from the meta-learning perspective. Extensive experiments and a series of analyses have shown the superiority of our CCRS on both the recommendation and dialogue services.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源