论文标题
连续阶段符号适应的指数方法,用于带有任意电磁场的带电粒子动力学
Continuous-stage symplectic adapted exponential methods for charged-particle dynamics with arbitrary electromagnetic fields
论文作者
论文摘要
本文致力于使用任意电磁场的带电粒子动力学(CPD)的数值符号近似。通过利用连续阶段的方法和指数积分器,在同质磁场下为CPD制定了一般的符号方法。基于派生的符号条件,构建了两个实用的符号方法,在误差估计中表明拟议的二阶方案在W.R.T. T.R.T.磁场的强度。此外,在非均匀磁场下将符号方法扩展到CPD,并制定了三种算法。对所提出的方法研究了严格的错误估计值,事实证明,一种方法在W.R.T.位置具有均匀的精度。磁场的强度。在同质和非均匀磁场下为CPD提供了数值实验,数值结果支持理论分析并证明了我们方法的显着数值行为。
This paper is devoted to the numerical symplectic approximation of the charged-particle dynamics (CPD) with arbitrary electromagnetic fields. By utilizing continuous-stage methods and exponential integrators, a general class of symplectic methods is formulated for CPD under a homogeneous magnetic field. Based on the derived symplectic conditions, two practical symplectic methods up to order four are constructed where the error estimates show that the proposed second order scheme has a uniform accuracy in the position w.r.t. the strength of the magnetic field. Moreover, the symplectic methods are extended to CPD under non-homogeneous magnetic fields and three algorithms are formulated. Rigorous error estimates are investigated for the proposed methods and one method is proved to have a uniform accuracy in the position w.r.t. the strength of the magnetic field. Numerical experiments are provided for CPD under homogeneous and non-homogeneous magnetic fields, and the numerical results support the theoretical analysis and demonstrate the remarkable numerical behavior of our methods.