论文标题

某些$ n $外面类别的愿望完成

Idempotent completion of certain $n$-exangulated categories

论文作者

He, Jian, He, Jing, Zhou, Panyue

论文摘要

最近显示,$ n $ extension封闭的子类别$ \ mathscr a $ a $ krull-schmidt $(n+2)$ - 角类别的自然结构为$ n $ excangulated oftery。在本文中,我们证明了其dempotent完成$ \ wideTilde {\ mathscr a} $允许$ n $ exanged结构。它不仅是LIN的主要结果的概括,而且还提供了$ n $的类别,它既不是$ n $ excACT,也不是$(n+2)$ - 一般而言。

It was shown recently that an $n$-extension closed subcategory $\mathscr A$ of a Krull-Schmidt $(n+2)$-angulated category has a natural structure of an $n$-exangulated category. In this article, we prove that its idempotent completion $\widetilde{\mathscr A}$ admits an $n$-exangulated structure. It is not only a generalization of the main result of Lin, but also gives an $n$-exangulated category which is neither $n$-exact nor $(n+2)$-angulated in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源