论文标题
裂缝的各向异性构成模型的正交分解
Orthogonal decomposition of anisotropic constitutive models for the phase field approach to fracture
论文作者
论文摘要
我们提出将本构关系分解为裂纹驱动和持续部分,该部分专为在相位场方法中具有各向异性/正骨行为的材料而设计,以解释张力压缩不对称性。该分解遵循变异框架,满足各向异性材料的正交条件。这意味着在三维环境中,本模型可以应用于任意各向异性弹性行为。在此基础上,我们将两个现有模型概括为各向同性材料中的张力压缩不对称性,即体积 - 脱依性模型和无张力模型,降低了具有各向异性性质的材料。两个基准问题,即单个缺口拉伸剪切测试,用于研究本模型的性能。结果可以保留各向异性的本构行为和裂纹反应中的张力压缩不对称性,并且根据正交材料的预期行为而定性地保持不对称。此外,为了研究最大能量耗散的方向,我们修改了基于表面积分的能量释放计算$g_θ$,以仅考虑裂纹驱动能量。通过我们提出的修改,计算出的能量与标准G-Theta方法相比正确地预测了断裂传播方向。
We propose a decomposition of constitutive relations into crack-driving and persistent portions, specifically designed for materials with anisotropic/orthotropic behavior in the phase field approach to fracture to account for the tension-compression asymmetry. This decomposition follows a variational framework, satisfying the orthogonality condition for anisotropic materials. This implies that the present model can be applied to arbitrary anisotropic elastic behavior in a three-dimensional setting. On this basis, we generalize two existing models for tension-compression asymmetry in isotropic materials, namely the volumetric-deviatoric model and the no-tension model, towards materials with anisotropic nature. Two benchmark problems, single notched tensile shear tests, are used to study the performance of the present model. The results can retain the anisotropic constitutive behavior and the tension-compression asymmetry in the crack response, and are qualitatively in accordance with the expected behavior for orthotropic materials. Furthermore, to study the direction of maximum energy dissipation, we modify the surface integral based energy release computation, $G_θ$, to account only for the crack-driving energy. The computed energies with our proposed modifications predict the fracture propagation direction correctly compared with the standard G-theta method.