论文标题
拖纹型:使用光谱嵌入和视觉变压器的新型光纤级全脑拖拉机分析框架
TractoFormer: A Novel Fiber-level Whole Brain Tractography Analysis Framework Using Spectral Embedding and Vision Transformers
论文作者
论文摘要
扩散MRI拖拉术是一种用于定量映射大脑结构连接性的高级成像技术。全脑拖拉机(WBT)数据包含数十万个单独的纤维流线(估计的大脑连接),并且通常会对这些数据进行分类,以创建紧凑的表示,以用于诸如疾病分类之类的数据分析应用。在本文中,我们提出了一种新颖的无拟合WBT分析框架Tractoformer,该框架在单个纤维流线的水平上利用拖拉术信息,并提供了使用变压器注意机制来解释结果的自然机制。拖载体包括两个主要贡献。首先,我们提出了一个新颖而简单的2D图像表示WBT,Tractobedding,以编码3D纤维空间关系以及可以从单个纤维(例如FA或MD)计算的任何感兴趣的特征。其次,我们设计了一个基于视觉变压器(VIT)的网络,其中包括:1)数据增强以克服在小数据集上过度拟合的模型,2)鉴定判别纤维以解释结果,以及3)组合学习以利用来自不同大脑区域的纤维信息。在合成数据实验中,TractoFormer成功地识别了具有模拟组差异的歧视纤维。在比较几种方法的疾病分类实验中,Tractoformer在分类精神分裂症与对照方面达到了最高的精度。在左半球额叶和顶浅的白质区域中鉴定出判别性纤维,这些区域以前已被证明在精神分裂症患者中受到影响。
Diffusion MRI tractography is an advanced imaging technique for quantitative mapping of the brain's structural connectivity. Whole brain tractography (WBT) data contains over hundreds of thousands of individual fiber streamlines (estimated brain connections), and this data is usually parcellated to create compact representations for data analysis applications such as disease classification. In this paper, we propose a novel parcellation-free WBT analysis framework, TractoFormer, that leverages tractography information at the level of individual fiber streamlines and provides a natural mechanism for interpretation of results using the attention mechanism of transformers. TractoFormer includes two main contributions. First, we propose a novel and simple 2D image representation of WBT, TractoEmbedding, to encode 3D fiber spatial relationships and any feature of interest that can be computed from individual fibers (such as FA or MD). Second, we design a network based on vision transformers (ViTs) that includes: 1) data augmentation to overcome model overfitting on small datasets, 2) identification of discriminative fibers for interpretation of results, and 3) ensemble learning to leverage fiber information from different brain regions. In a synthetic data experiment, TractoFormer successfully identifies discriminative fibers with simulated group differences. In a disease classification experiment comparing several methods, TractoFormer achieves the highest accuracy in classifying schizophrenia vs control. Discriminative fibers are identified in left hemispheric frontal and parietal superficial white matter regions, which have previously been shown to be affected in schizophrenia patients.