论文标题

部分可观测时空混沌系统的无模型预测

Stellar Loci VI: An Updated Catalog of the Best and Brightest Metal-poor Stars

论文作者

Xu, Shuai, Yuan, Haibo, Zhang, Ruoyi, Li, Haining, Beers, Timothy C., Huang, Yang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We employ Gaia, 2MASS, and ALLWISE photometry, as well as astrometric data from Gaia, to search for relatively bright very metal-poor ([Fe/H] $< -2.0$; VMP) giant star candidates using three different criteria: 1) our derived Gaia photometric metallicities, 2) the lack of stellar molecular absorption near 4.6 microns, and 3) their high tangential velocities. With different combinations of these criteria, we have identified six samples of candidates with $G <$ 15: the Gold sample (24,304 candidates), the Silver GW sample (40,157 candidates), the Silver GK sample (120,452 candidates), the Bronze G sample (291,690 candidates), the Bronze WK sample (68,526 candidates), and the Low $b$ sample (4,645 candidates). The Low $b$ sample applies to sources with low Galactic latitude, $|b| < 10^\circ$, while the others are for sources with $|b| > 10^\circ$. By cross-matching with results derived from medium-resolution ($R \sim$ 1800) from LAMOST DR8, we establish that the success rate for identifying VMP stars is 60.1$\%$ for the Gold sample, 39.2$\%$ for the Silver GW sample, 41.3$\%$ for the Silver GK sample, 15.4$\%$ for the Bronze G sample, 31.7$\%$ for the Bronze WK sample, and 16.6$\%$ for the Low $b$ sample, respectively. An additional strict cut on the quality parameter $RUWE < 1.1$ can further increase the success rate of the Silver GW, Silver GK, and Bronze G samples to 46.9$\%$, 51.6$\%$, and 29.3$\%$, respectively. Our samples provide valuable targets for high-resolution follow-up spectroscopic observations, and are made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源