论文标题
三角kagome晶格上的拓扑镁
Topological magnons on the triangular kagome lattice
论文作者
论文摘要
我们通过计算其浆果曲率,Chern数量和边缘状态来介绍三角kagome晶格(TKL)上的镁拓扑。除了铁磁状态外,TKL还具有铁磁基态,因为其两个sublattices可以通过铁磁性或抗fir磁性互相彼此夫妇。使用Holstein-Primakoff(HP)Boson理论和Green的功能方法,我们发现TKL具有丰富的拓扑结构结构,与Kagome和Honeycomb Lattices相比,Chern数量较高。镁质边缘电流可以方便地计算热霍尔系数,轨道角动量与爱因斯坦 - de HAAS效应相关。我们将计算应用于TKL,并得出拓扑旋转磁比在零温度限制下显示非零的爱因斯坦 - de haas效应。我们的结果使TKL成为量子镁应用程序的潜在平台,包括高精度机械传感器和信息传输。
We present the topology of magnons on the triangular kagome lattice (TKL) by calculating its Berry curvature, Chern number and edge states. In addition to the ferromagnetic state, the TKL hosts ferrimagnetic ground state as its two sublattices can couple with each other either ferromagnetically or antiferromagnetically. Using Holstein-Primakoff (HP) boson theory and Green's function approach, we find that the TKL has a rich topological band structure with added high Chern numbers compared with the kagome and honeycomb lattices. The magnon edge current allows a convenient calculation of thermal Hall coefficients and the orbital angular momentum gives correlation to the Einstein-de Haas effect. We apply the calculations to the TKL and derive the topological gyromagnetic ratio showing a nonzero Einstein-de Haas effect in the zero temperature limit. Our results render the TKL as a potential platform for quantum magnonics applications including high-precision mechanical sensors and information transmission.