论文标题

在扰动下,成对的无界非司法自我接合操作员的功能

Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation

论文作者

Aleksandrov, Aleksei, Peller, Vladimir

论文摘要

对于一对$(a,b)的$不一定是有限的,不一定要通勤自动接合操作员,并且对于欧几里得空间上的功能$ f $ $ {\ bbb r}^2 $这些操作员是密集定义的操作员。我们考虑了在$ $(a,b)$的扰动下估算功能$ f(a,b)$的问题。 It is established that if $1\le p\le2$, and $(A_1,B_1)$ and $(A_2,B_2)$ are pairs of not necessarily bounded and not necessarily commuting self-adjoint operators such that the operators $A_1​​-A_2$ and $B_1-B_2$ belong to the Schatten--von Neumann class $\boldsymbol{S}_p$ with $ p \ in [1,2] $和$ f \ in B _ {\ infty,1}^1({\ bbb r}^2)$,然后以下Lipschitz Type estimate保持:\ [\ [\ | f(a_1,b_1,b_1,b_1)-f(a_2,b_2,b_2,b_2) \ le \ operatorName {const} \ | f \ | _ {b _ {\ infty,1}^1} \ max \ big \ big \ \ {\ | a_1-- a_2 \ | _ {\ boldsymbol {s} _p},\ | b_1-b_2 \ | _ {\ boldsymbol {s} _p} _p} \ big \}。 \]

For a pair $(A,B)$ of not necessarily bounded and not necessarily commuting self-adjoint operators and for a function $f$ on the Euclidean space ${\Bbb R}^2$ that belongs to the inhomogeneous Besov class $B_{\infty,1}^1({\Bbb R}^2)$, we define the function $f(A,B)$ of these operators as a densely defined operator. We consider the problem of estimating the functions $f(A,B)$ under perturbations of the pair $(A,B)$. It is established that if $1\le p\le2$, and $(A_1,B_1)$ and $(A_2,B_2)$ are pairs of not necessarily bounded and not necessarily commuting self-adjoint operators such that the operators $A_1-A_2$ and $B_1-B_2$ belong to the Schatten--von Neumann class $\boldsymbol{S}_p$ with $p\in[1,2]$ and $f\in B_{\infty,1}^1({\Bbb R}^2)$, then the following Lipschitz type estimate holds: \[ \|f(A_1,B_1)-f(A_2,B_2)\|_{\boldsymbol{S}_p} \le\operatorname{const}\|f\|_{B_{\infty,1}^1}\max\big\{\|A_1-A_2\|_{\boldsymbol{S}_p},\|B_1-B_2\|_{\boldsymbol{S}_p}\big\}. \]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源