论文标题
观察$Ω(2012)^ - \ toξ(1530)\ bar {k} $以及$ω(2012)^ - $ to $ξ(1530)\ bar {k} $和$ξ\ bar {k} $的有效耦合的测量
Observation of $Ω(2012)^- \to Ξ(1530)\bar{K}$ and measurement of the effective couplings of $Ω(2012)^-$ to $Ξ(1530)\bar{K}$ and $Ξ\bar{K}$
论文作者
论文摘要
使用$υ(1s)$,$υ(2s)$和$υ(3S)$数据由Belle检测器收集的数据,我们发现了一个新的三体衰变,$ω(2012)^ - \ to了ξ(1530)\ bar k \ to了ξπ\ bar k $,其重要性为5.2〜 $σ$。 $ω(2012)^ - $是$(2012.5 \ pm0.7 \ pm0.5)$ mev及其有效耦合到$ξ(1530)\ bar {k} $和$ξ\ bar {k {k} $是$(39^{+31} _ {+31} _ { - 39} _ { - 39} $ 2} $(1.7 \ pm0.3 \ pm0.3)\ times10^{ - 2} $,其中第一个不确定性是统计的,第二个是系统的。假设Isospin Symmetry假定,三体衰减的分支分数与两体衰减与$ξ\ bar {k} $的比率为$ 0.99 \ pm0.26 \ pm0.06 $。
Using $Υ(1S)$, $Υ(2S)$, and $Υ(3S)$ data collected by the Belle detector, we discover a new three-body decay, $Ω(2012)^-\toΞ(1530)\bar K\toΞπ\bar K$, with a significance of 5.2~$σ$. The mass of the $Ω(2012)^-$ is $(2012.5\pm0.7\pm0.5)$ MeV and its effective couplings to $Ξ(1530)\bar{K}$ and $Ξ\bar{K}$ are $(39^{+31}_{-39}\pm9)\times10^{-2}$ and $(1.7\pm0.3\pm0.3)\times10^{-2}$, where the first uncertainties are statistical and the second are systematic. The ratio of the branching fraction for the three-body decay to that for the two-body decay to $Ξ\bar{K}$ is $0.99\pm0.26\pm0.06$, assuming isospin symmetry.