论文标题

联合雷达混乱分类的创新认知方法和在异质环境中的多个目标检测

Innovative Cognitive Approaches for Joint Radar Clutter Classification and Multiple Target Detection in Heterogeneous Environments

论文作者

Yan, Linjie, Han, Sudan, Hao, Chengpeng, Orlando, Danilo, Ricci, Giuseppe

论文摘要

在以不同的杂物类型为特征的情况下,对多点状目标的联合自适应检测仍然是雷达社区的一个开放问题。在本文中,我们通过设计能够根据其杂物特性对范围箱进行分类的检测架构并检测到位置和数字未知的可能的多个目标,从而为该问题提供了解决方案。值得注意的是,拟议的体系结构提供的信息使系统意识到周围环境,并可以利用以增强系统的整个检测和估计性能。在设计阶段,我们假设三种不同的信号模型,并将潜在变量模型与基于期望最大化算法的估计程序结合使用。此外,对于某些模型,不能以封闭形式计算最大化步骤(至少据作者所知),因此,可以追求合适的近似值,而在其他情况下,则是准确的。根据合成数据评估了所提出的体系结构的性能,并表明它们可以在异质场景中有效,从而提供了雷达操作场景的初始快照。

The joint adaptive detection of multiple point-like targets in scenarios characterized by different clutter types is still an open problem in the radar community. In this paper, we provide a solution to this problem by devising detection architectures capable of classifying the range bins according to their clutter properties and detecting possible multiple targets whose positions and number are unknown. Remarkably, the information provided by the proposed architectures makes the system aware of the surrounding environment and can be exploited to enhance the entire detection and estimation performance of the system. At the design stage, we assume three different signal models and apply the latent variable model in conjunction with estimation procedures based upon the expectation-maximization algorithm. In addition, for some models, the maximization step cannot be computed in closed-form (at least to the best of authors' knowledge) and, hence, suitable approximations are pursued, whereas, in other cases, the maximization is exact. The performance of the proposed architectures is assessed over synthetic data and shows that they can be effective in heterogeneous scenarios providing an initial snapshot of the radar operating scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源