论文标题
$ \ mathbb z^k $中的某些花圈产品中的reidemeister课程
Reidemeister classes in some wreath products by $\mathbb Z^k$
论文作者
论文摘要
在受限的花环产品中,$ g \ wr \ mathbb z^k $,其中$ g $是一个有限的阿贝尔集团,我们发现三个大型组,承认具有有限的reidemeister $ r(φ)$的$ reidemister $ r($φ$ twisted conjugacy类)。换句话说,这些类的组没有$ r_ \ infty $属性。 If a general automorphism $φ$ of $G\wr \mathbb Z^k$ has a finite order (this is the case for $φ$ detected in the first part of the paper) and $R(φ)<\infty$, we prove that $R(φ)$ coincides with the number of equivalence classes of finite-dimensional irreducible unitary representations of $G\wr \mathbb z^k $,由双映射$ [ρ] \ mapsto [ρ\circcφ] $(即我们证明有关这些$φ$的有限扭曲的burnside-frobenius theorem,tbft $ _f $)的猜想)。
Among restricted wreath products $G\wr \mathbb Z^k $, where $G$ is a finite Abelian group, we find three large classes of groups admitting an automorphism $φ$ with finite Reidemeister number $R(φ)$ (number of $φ$-twisted conjugacy classes). In other words, groups from these classes do not have the $R_\infty$ property. If a general automorphism $φ$ of $G\wr \mathbb Z^k$ has a finite order (this is the case for $φ$ detected in the first part of the paper) and $R(φ)<\infty$, we prove that $R(φ)$ coincides with the number of equivalence classes of finite-dimensional irreducible unitary representations of $G\wr \mathbb Z^k$, which are fixed by the dual map $[ρ]\mapsto [ρ\circ φ]$ (i.e. we prove the conjecture about finite twisted Burnside-Frobenius theorem, TBFT$_f$, for these $φ$).