论文标题

部分可观测时空混沌系统的无模型预测

Critical points of the solution to the $H_R=H_L$ surface equation

论文作者

Albujer, Alma L., Caballero, Magdalena

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Spacelike surfaces with the same mean curvature in $\mathbb{R}^3$ and $\mathbb{L}^3$ are locally described as the graph of the solutions to the $H_R=H_L$ surface equation, which is an elliptic partial differential equation except at the points at which the gradient vanishes, because the equation degenerates. In this paper we study precisely the critical points of the solutions to such equation. Specifically, we give a necessary geometrical condition for a point to be critical, we obtain a new uniqueness result for the Dirichlet problem related to the $H_R=H_L$ surface equation and we get a Heinz-type bound for the inradius of the domain of any solution to such equation, improving a previous result by the authors. Finally, we also get a bound for the inradius of the domain of any function of class $\mathcal{C}^2$ in terms of the curvature of its level curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源