论文标题

通过元学习的有效命名实体命名实体

Effective Few-Shot Named Entity Linking by Meta-Learning

论文作者

Li, Xiuxing, Li, Zhenyu, Zhang, Zhengyan, Liu, Ning, Yuan, Haitao, Zhang, Wei, Liu, Zhiyuan, Wang, Jianyong

论文摘要

实体链接旨在将模棱两可的提及与知识库中的相应实体联系起来,这对于各种下游应用程序(例如知识基础完成,问题答案和信息提取)至关重要。尽管已经为这项任务做出了巨大的努力,但这些研究中的大多数都遵循以下假设:大规模标记的数据可获得。但是,当由于劳动密集型注释工作而导致的特定领域不足时,现有算法的性能将遭受无法忍受的下降。在本文中,我们努力解决了几个弹药实体链接的问题,这仅需要最少的标记数据,并且在实际情况下更为实用。具体而言,我们首先提出了一种新颖的弱监督策略,以基于提及的重写生成非平凡的合成实体对。由于合成数据的质量对有效的模型训练有关键的影响,因此我们进一步设计了一种元学习机制,以自动为每个合成实体对分配不同的权重。通过这种方式,我们可以深刻利用丰富而宝贵的语义信息,以在少数拍摄的设置下得出训练有素的实体链接模型。现实世界数据集上的实验表明,所提出的方法可以广泛改善最新的几杆实体链接模型,并在只有少量标记的数据可用时实现令人印象深刻的性能。此外,我们还展示了模型可传递性的出色能力。

Entity linking aims to link ambiguous mentions to their corresponding entities in a knowledge base, which is significant and fundamental for various downstream applications, e.g., knowledge base completion, question answering, and information extraction. While great efforts have been devoted to this task, most of these studies follow the assumption that large-scale labeled data is available. However, when the labeled data is insufficient for specific domains due to labor-intensive annotation work, the performance of existing algorithms will suffer an intolerable decline. In this paper, we endeavor to solve the problem of few-shot entity linking, which only requires a minimal amount of in-domain labeled data and is more practical in real situations. Specifically, we firstly propose a novel weak supervision strategy to generate non-trivial synthetic entity-mention pairs based on mention rewriting. Since the quality of the synthetic data has a critical impact on effective model training, we further design a meta-learning mechanism to assign different weights to each synthetic entity-mention pair automatically. Through this way, we can profoundly exploit rich and precious semantic information to derive a well-trained entity linking model under the few-shot setting. The experiments on real-world datasets show that the proposed method can extensively improve the state-of-the-art few-shot entity linking model and achieve impressive performance when only a small amount of labeled data is available. Moreover, we also demonstrate the outstanding ability of the model's transferability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源