论文标题
进一步的结果是$ q $ - 三项元素系数的分裂性
Further results on the divisibility of $q$-trinomial coefficients
论文作者
论文摘要
我们研究了$ Q $ - 三项系数$τ_0(n,m,q)$,$ t_0(n,m,q)$和$ t_1 $和$ t_1(n,m,q)$,首先是由Andrews and Baxter引入的。特别是,我们完全确定$τ_0(an,bn,q)$,$ t_0(an,bn,q)$和$ t_1(an,bn,bn,q)$ modulo the Cylotomial $φ_n(q)$ $(a,b)=(a,b)=(m,m,m-1)$。
We study divisibility for the $q$-trinomial coefficients $τ_0(n,m,q)$, $T_0(n,m,q)$ and $T_1(n,m,q)$, which were first introduced by Andrews and Baxter. In particular, we completely determine $τ_0(an,bn,q)$, $T_0(an,bn,q)$ and $T_1(an,bn,q)$ modulo the square of the cyclotomic polynomial $Φ_n(q)$ for $(a,b)=(m,m-1)$.