论文标题
部分可观测时空混沌系统的无模型预测
Virtual stain transfer in histology via cascaded deep neural networks
论文作者
论文摘要
病理诊断依赖于组织学染色的薄组织样品的目视检查,其中使用不同类型的污渍来对比并突出各种所需的组织学特征。但是,破坏性的组织化学染色程序通常是不可逆的,因此很难在同一组织段上获得多个污渍。在这里,我们通过层叠的深神经网络(C-DNN)演示了虚拟的染色转移框架,以数字化将苏木精和曙红(H&E)染色的组织图像转化为其他类型的组织学污渍。与单个神经网络结构仅将一种染色类型作为输入来以数字输出的另一种染色类型的输出图像,C-DNN首先使用虚拟染色将自动荧光显微镜图像转换为H&E,然后以级联的方式执行从H&E到其他污渍域的污渍传递。在训练阶段,这种级联结构使该模型可以直接利用H&E和目标特殊污渍的组织化学染色图像数据。该优势减轻了配对数据获取的挑战,并提高了虚拟污渍从H&E转移到另一个污渍的图像质量和色彩精度。我们使用肾针芯活检组织切片验证了这种C-DNN方法的出色性能,并将H&E染色的组织图像成功地转移到虚拟PAS(周期性酸 - 雪)染色中。该方法使用现有的,组织化学染色的幻灯片为特殊污渍提供了高质量的虚拟图像,并通过执行高度准确的污渍转换来创造数字病理学的新机会。
Pathological diagnosis relies on the visual inspection of histologically stained thin tissue specimens, where different types of stains are applied to bring contrast to and highlight various desired histological features. However, the destructive histochemical staining procedures are usually irreversible, making it very difficult to obtain multiple stains on the same tissue section. Here, we demonstrate a virtual stain transfer framework via a cascaded deep neural network (C-DNN) to digitally transform hematoxylin and eosin (H&E) stained tissue images into other types of histological stains. Unlike a single neural network structure which only takes one stain type as input to digitally output images of another stain type, C-DNN first uses virtual staining to transform autofluorescence microscopy images into H&E and then performs stain transfer from H&E to the domain of the other stain in a cascaded manner. This cascaded structure in the training phase allows the model to directly exploit histochemically stained image data on both H&E and the target special stain of interest. This advantage alleviates the challenge of paired data acquisition and improves the image quality and color accuracy of the virtual stain transfer from H&E to another stain. We validated the superior performance of this C-DNN approach using kidney needle core biopsy tissue sections and successfully transferred the H&E-stained tissue images into virtual PAS (periodic acid-Schiff) stain. This method provides high-quality virtual images of special stains using existing, histochemically stained slides and creates new opportunities in digital pathology by performing highly accurate stain-to-stain transformations.