论文标题

约束ltl的可实现问题

Realizability Problem for Constraint LTL

论文作者

Bhaskar, Ashwin, Praveen, M.

论文摘要

约束线性时间逻辑(CLTL)是LTL的扩展,该扩展是根据无限域上的变量估值序列解释的。原子公式被解释为对估值的约束。原子公式可以沿序列限制在一系列位置上的估值,其范围由参数界定,具体取决于公式。 Demri和D'Souza研究了CLTL的满意度和模型检查问题。我们考虑CLTL的可变性问题。一组变量分为两个部分,每个部分由玩家控制。玩家轮流选择其变量的估值,产生一系列估值。获胜条件由CLTL公式指定 - 如果估值顺序满足指定的公式,则第一个玩家会获胜。我们研究检查第一个玩家是否在给定CLTL公式的可靠性游戏中是否有胜利策略的决定性。我们证明,在域满足完成财产的情况下,这是可以决定的,Balbiani和Condotta在满意度的背景下引入了该财产。我们证明,它在$(\ mathbb {z},<,=)$上是不可确定的,该$是订单和平等的整数域。我们证明,超过$(\ mathbb {z},<,=)$,如果公式中的原子约束只能限制属于第二个玩家的变量的当前变量的当前价值,但是对于属于第一个玩家的变量没有这样的限制。我们称此单面游戏。

Constraint linear-time temporal logic (CLTL) is an extension of LTL that is interpreted on sequences of valuations of variables over an infinite domain. The atomic formulas are interpreted as constraints on the valuations. The atomic formulas can constrain valuations over a range of positions along a sequence, with the range being bounded by a parameter depending on the formula. The satisfiability and model checking problems for CLTL have been studied by Demri and D'Souza. We consider the realizability problem for CLTL. The set of variables is partitioned into two parts, with each part controlled by a player. Players take turns to choose valuations for their variables, generating a sequence of valuations. The winning condition is specified by a CLTL formula -- the first player wins if the sequence of valuations satisfies the specified formula. We study the decidability of checking whether the first player has a winning strategy in the realizability game for a given CLTL formula. We prove that it is decidable in the case where the domain satisfies the completion property, a property introduced by Balbiani and Condotta in the context of satisfiability. We prove that it is undecidable over $(\mathbb{Z},<,=)$, the domain of integers with order and equality. We prove that over $(\mathbb{Z},<,=)$, it is decidable if the atomic constraints in the formula can only constrain the current valuations of variables belonging to the second player, but there are no such restrictions for the variables belonging to the first player. We call this single-sided games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源