论文标题
干扰限制的超级可靠和低延迟通信:图形神经网络还是随机几何形状?
Interference-Limited Ultra-Reliable and Low-Latency Communications: Graph Neural Networks or Stochastic Geometry?
论文作者
论文摘要
在本文中,我们旨在改善干扰限制的无线网络中超级可靠性和低延迟通信(URLLC)的服务质量(QoS)。为了在通道相干时间内获得时间多样性,我们首先提出了一个随机的重复方案,该方案随机将干扰能力随机。然后,我们优化了每个数据包的保留插槽数量和重复数量,以最大程度地减少QoS违规概率,这定义为无法实现URLLC的用户百分比。我们构建了一个级联的随机边缘图神经网络(REGNN),以表示重复方案并开发一种无模型的无监督学习方法来训练它。我们在对称方案中使用随机几何形状分析了QoS违规概率,并应用了基于模型的详尽搜索(ES)方法来找到最佳解决方案。仿真结果表明,在对称方案中,通过模型学习方法和基于模型的ES方法实现的QoS违规概率几乎相同。在更一般的情况下,级联的Regnn在具有不同尺度,网络拓扑,细胞密度和频率重复使用因子的无线网络中很好地概括了。在模型不匹配的情况下,它的表现优于基于模型的ES方法。
In this paper, we aim to improve the Quality-of-Service (QoS) of Ultra-Reliability and Low-Latency Communications (URLLC) in interference-limited wireless networks. To obtain time diversity within the channel coherence time, we first put forward a random repetition scheme that randomizes the interference power. Then, we optimize the number of reserved slots and the number of repetitions for each packet to minimize the QoS violation probability, defined as the percentage of users that cannot achieve URLLC. We build a cascaded Random Edge Graph Neural Network (REGNN) to represent the repetition scheme and develop a model-free unsupervised learning method to train it. We analyze the QoS violation probability using stochastic geometry in a symmetric scenario and apply a model-based Exhaustive Search (ES) method to find the optimal solution. Simulation results show that in the symmetric scenario, the QoS violation probabilities achieved by the model-free learning method and the model-based ES method are nearly the same. In more general scenarios, the cascaded REGNN generalizes very well in wireless networks with different scales, network topologies, cell densities, and frequency reuse factors. It outperforms the model-based ES method in the presence of the model mismatch.