论文标题

来自任何宽大的量子多体系统的快速混合马尔可夫链

A rapidly mixing Markov chain from any gapped quantum many-body system

论文作者

Bravyi, Sergey, Carleo, Giuseppe, Gosset, David, Liu, Yinchen

论文摘要

我们考虑从发行版$π(x)= | \ langle x |ψ\ rangle |^2 $采样$ x $的计算任务,其中$ψ$是本地汉密尔顿$ h $的独特基态。我们的主要结果描述了$ h $的反光谱差距与与稳态$π$相关的连续时间马尔可夫链的混合时间之间的直接联系。每当基态振幅的比率$ \ langle y |ψ\ rangle/\ langle x |ψ\ rangle $都是有效的计算,$ h $的光谱差距至少在系统的起始状态中,并且可以满足链条的起始状态,则可以有效地计算,马尔可夫链就可以有效地实现。这扩展了以前已知的无标志性哈密顿人和马尔可夫连锁店之间的关系。实现这种概括的工具是所谓的固定节点汉密尔顿结构,以前在量子蒙特卡洛模拟中使用以解决费米子标志问题。我们以数值方式实现了提出的采样算法,并将其从Haldane-Shastry Hamiltonian的基础状态采样,最多可达56量。我们从经验上观察到,基于固定节点哈密顿的马尔可夫链比标准大都市马尔可夫链更快。

We consider the computational task of sampling a bit string $x$ from a distribution $π(x)=|\langle x|ψ\rangle|^2$, where $ψ$ is the unique ground state of a local Hamiltonian $H$. Our main result describes a direct link between the inverse spectral gap of $H$ and the mixing time of an associated continuous-time Markov Chain with steady state $π$. The Markov Chain can be implemented efficiently whenever ratios of ground state amplitudes $\langle y|ψ\rangle/\langle x|ψ\rangle$ are efficiently computable, the spectral gap of $H$ is at least inverse polynomial in the system size, and the starting state of the chain satisfies a mild technical condition that can be efficiently checked. This extends a previously known relationship between sign-problem free Hamiltonians and Markov chains. The tool which enables this generalization is the so-called fixed-node Hamiltonian construction, previously used in Quantum Monte Carlo simulations to address the fermionic sign problem. We implement the proposed sampling algorithm numerically and use it to sample from the ground state of Haldane-Shastry Hamiltonian with up to 56 qubits. We observe empirically that our Markov chain based on the fixed-node Hamiltonian mixes more rapidly than the standard Metropolis-Hastings Markov chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源