论文标题

可训练的关节双边滤波器,以增强低剂量CT的预测稳定性

Trainable Joint Bilateral Filters for Enhanced Prediction Stability in Low-dose CT

论文作者

Wagner, Fabian, Thies, Mareike, Denzinger, Felix, Gu, Mingxuan, Patwari, Mayank, Ploner, Stefan, Maul, Noah, Pfaff, Laura, Huang, Yixing, Maier, Andreas

论文摘要

低剂量计算机断层扫描(CT)降级算法旨在使常规CT采集的患者剂量减少,同时保持高图像质量。最近,引入了深度学习〜(DL)的方法,由于其较高的模型容量,因此在此任务上的常规授权算法优于常规deno。但是,为了过渡基于DL的降级到临床实践,这些数据驱动的方法必须超越可见的训练数据来概括。因此,我们提出了一种由一组可训练的联合双边滤波器(JBF)组成的混合降解方法,并结合了基于卷积DL的DENOCINES网络,以预测指导图像。我们提出的DeNoising Pipeline将基于DL的特征提取和常规JBF的可靠性启用的高模型容量结合在一起。通过在没有金属植入物的腹部CT扫描上进行训练以及对金属植入物以及头部CT数据进行腹部扫描测试,可以证明该管道的概括能力。当我们的管道中嵌入两个基于DL的DENOISER(RED-CNN/QAE)时,Denoisis的性能提高了$ 10 \,\%$/$ 82 \,\%$(RMSE)和$ 3 \,\%$/$/$ 81 $ 81 \,$ 81 \,\%$(PSNR),$ 6 \%\%\%\%\%,$ 6 \ \ \%, (rmse)和$ 2 \,\%$/$ 4 \,\%$(psnr)与各自的香草型相比。最后,提出的可训练的JBFS限制了深神经网络的误差限制,以促进基于DL的低剂量CT管道中的基于DL的DeNoiser的适用性。

Low-dose computed tomography (CT) denoising algorithms aim to enable reduced patient dose in routine CT acquisitions while maintaining high image quality. Recently, deep learning~(DL)-based methods were introduced, outperforming conventional denoising algorithms on this task due to their high model capacity. However, for the transition of DL-based denoising to clinical practice, these data-driven approaches must generalize robustly beyond the seen training data. We, therefore, propose a hybrid denoising approach consisting of a set of trainable joint bilateral filters (JBFs) combined with a convolutional DL-based denoising network to predict the guidance image. Our proposed denoising pipeline combines the high model capacity enabled by DL-based feature extraction with the reliability of the conventional JBF. The pipeline's ability to generalize is demonstrated by training on abdomen CT scans without metal implants and testing on abdomen scans with metal implants as well as on head CT data. When embedding two well-established DL-based denoisers (RED-CNN/QAE) in our pipeline, the denoising performance is improved by $10\,\%$/$82\,\%$ (RMSE) and $3\,\%$/$81\,\%$ (PSNR) in regions containing metal and by $6\,\%$/$78\,\%$ (RMSE) and $2\,\%$/$4\,\%$ (PSNR) on head CT data, compared to the respective vanilla model. Concluding, the proposed trainable JBFs limit the error bound of deep neural networks to facilitate the applicability of DL-based denoisers in low-dose CT pipelines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源