论文标题

关于贪婪的Wasserstein最小化的组合特性

On Combinatorial Properties of Greedy Wasserstein Minimization

论文作者

Steinerberger, Stefan

论文摘要

我们讨论了一种现象,其中最佳运输会导致大量的组合规律性。考虑以$ [0,1] $构建以贪婪的方式构建的无限序列$(x_k)_ {k = 1}^{\ infty} $ in $ [0,1] $:给定$ x_1,\ dots,x_n $,新的点$ x__ {n+1} $,以便选择$ w liper $ w y sempir $ w y+pimim $ w__2测量,$ x_ {n+1} = \ arg \ min_x〜w_2 \ left(\ frac {1} {n+1} \ sum_ {k = 1}^{n}δ__{x_k}示例:$ x_ {n+1} =(2k+1)/(2n+2)$ in \ mathbb {z} $中的某些$ k \)与Ralph Kritzinger最近在其他设置中引入的序列相吻合。从数值上讲,这些序列的规律性与组合学或数理论的最著名构造相媲美。我们证明了平方根屏障以下的规律性结果。

We discuss a phenomenon where Optimal Transport leads to a remarkable amount of combinatorial regularity. Consider infinite sequences $(x_k)_{k=1}^{\infty}$ in $[0,1]$ constructed in a greedy manner: given $x_1, \dots, x_n$, the new point $x_{n+1}$ is chosen so as to minimize the Wasserstein distance $W_2$ between the empirical measure of the $n+1$ points and the Lebesgue measure, $$x_{n+1} = \arg\min_x ~W_2\left( \frac{1}{n+1} \sum_{k=1}^{n} δ_{x_k} + \frac{δ_{x}}{n+1}, dx\right).$$ This leads to fascinating sequences (for example: $x_{n+1} = (2k+1)/(2n+2)$ for some $k \in \mathbb{Z}$) which coincide with sequences recently introduced by Ralph Kritzinger in a different setting. Numerically, the regularity of these sequences rival the best known constructions from Combinatorics or Number Theory. We prove a regularity result below the square root barrier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源