论文标题
数据驱动的自触发控制通过轨迹预测
Data-driven Self-triggered Control via Trajectory Prediction
论文作者
论文摘要
自我触发的控制是一种据可记录的技术,用于在确保所需的系统性能的同时减少沟通开销,并越来越受欢迎。但是,现有的自触发控制方法需要明确的系统模型,这些模型被认为是先验的。称为数据驱动控制的端到端控制范式直接从数据中学习控制法律,并提供了常规系统识别的竞争替代方案 - 然后是控制方法。在这种情况下,本文使用离线数据收集的数据为未知线性系统提出了数据驱动的自触发控制方案。具体而言,对于输出反馈控制系统,提出了数据驱动的模型预测控制(MPC)方案,该方案在生成预测的系统轨迹的同时计算一系列控制输入。通过预测的轨迹设计了由数据驱动的自触发定律,以确定一个新的测量后,确定下一个触发时间。对于状态反馈控制系统,而不是大写MPC来预测轨迹,而是解决了使用预采用的输入状态数据的数据拟合问题,该问题被用来构建自触发机制。为提出的自触发控制器建立了可行性和稳定性,并使用数值示例验证。
Self-triggered control, a well-documented technique for reducing the communication overhead while ensuring desired system performance, is gaining increasing popularity. However, existing methods for self-triggered control require explicit system models that are assumed perfectly known a priori. An end-to-end control paradigm known as data-driven control learns control laws directly from data, and offers a competing alternative to the routine system identification-then-control method. In this context, the present paper puts forth data-driven self-triggered control schemes for unknown linear systems using data collected offline. Specifically, for output feedback control systems, a data-driven model predictive control (MPC) scheme is proposed, which computes a sequence of control inputs while generating a predicted system trajectory. A data-driven self-triggering law is designed using the predicted trajectory, to determine the next triggering time once a new measurement becomes available. For state feedback control systems, instead of capitalizing on MPC to predict the trajectory, a data-fitting problem using the pre-collected input-state data is solved, whose solution is employed to construct the self-triggering mechanism. Both feasibility and stability are established for the proposed self-triggered controllers, which are validated using numerical examples.