论文标题

不要停止学习:持续学习剪辑模型

Don't Stop Learning: Towards Continual Learning for the CLIP Model

论文作者

Ding, Yuxuan, Liu, Lingqiao, Tian, Chunna, Yang, Jingyuan, Ding, Haoxuan

论文摘要

对比性语言图像预训练(剪辑)模型是最近提出的大型大规模培训模型,它吸引了计算机视觉社区越来越多的关注。从其巨大的图像文本训练集中受益,剪辑模型在零拍学习和图像文本匹配方面学习了出色的功能。为了提高剪辑在某些目标视觉概念上的识别性能,通常希望通过在额外的培训数据上微调一些利益来进一步更新剪辑模型。但是,这项操作引起了一个重要的问题:更新会损害零镜头学习或剪辑的匹配能力,即灾难性的遗忘问题吗?如果是,是否可以适应现有的持续学习算法来减轻灾难性遗忘的风险?为了回答这些问题,这项工作对剪辑模型的持续学习问题进行了系统性研究。我们构建评估协议,以衡量微调更新的影响,并探索不同的方法来升级现有的持续学习方法,以减轻剪辑模型的遗忘问题。我们的研究揭示了剪辑持续学习问题的特殊挑战,并为进一步的研究奠定了基础。此外,我们提出了一种新算法,被称为学习,而无需通过重播词汇(VR-LWF)忘记,该算法显示出减轻剪辑模型遗忘问题的确切有效性。

The Contrastive Language-Image Pre-training (CLIP) Model is a recently proposed large-scale pre-train model which attracts increasing attention in the computer vision community. Benefiting from its gigantic image-text training set, the CLIP model has learned outstanding capabilities in zero-shot learning and image-text matching. To boost the recognition performance of CLIP on some target visual concepts, it is often desirable to further update the CLIP model by fine-tuning some classes-of-interest on extra training data. This operation, however, raises an important concern: will the update hurt the zero-shot learning or image-text matching capability of the CLIP, i.e., the catastrophic forgetting issue? If yes, could existing continual learning algorithms be adapted to alleviate the risk of catastrophic forgetting? To answer these questions, this work conducts a systemic study on the continual learning issue of the CLIP model. We construct evaluation protocols to measure the impact of fine-tuning updates and explore different ways to upgrade existing continual learning methods to mitigate the forgetting issue of the CLIP model. Our study reveals the particular challenges of CLIP continual learning problem and lays a foundation for further researches. Moreover, we propose a new algorithm, dubbed Learning without Forgetting via Replayed Vocabulary (VR-LwF), which shows exact effectiveness for alleviating the forgetting issue of the CLIP model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源