论文标题

薄层:带有消失的本地$ h^*$ - 多项式的晶格多面有

Thin polytopes: Lattice polytopes with vanishing local $h^*$-polynomial

论文作者

Borger, Christopher, Kretschmer, Andreas, Nill, Benjamin

论文摘要

在本文中,我们研究了薄型多型的新颖概念:晶格多塔的局部$ h^*$ - 多项式消失。本地$ H^*$ - 多项式是现代Ehrhart理论中的重要不变。它的定义可以追溯到斯坦利(Stanley),卡鲁(Karu),鲍里索夫(Borisov)和马维洛托夫(Mavlyutov),施佩斯(Schepers)和卡兹(Katz&Stapledon)取得了基本结果。对薄简便的研究最初是由Gelfand,Kapranov和Zelevinsky提出的,在这种情况下,在这种情况下,局部$ H^*$ - 多项式简单地等于其所谓的盒子多项式。我们的主要结果是将薄的多面体的完整分类至尺寸3,以及戈伦斯坦多型的薄度的表征。该论文还包括对本地$ H^*$ - 多项式的简介,并对先前的结果进行了调查。

In this paper we study the novel notion of thin polytopes: lattice polytopes whose local $h^*$-polynomials vanish. The local $h^*$-polynomial is an important invariant in modern Ehrhart theory. Its definition goes back to Stanley with fundamental results achieved by Karu, Borisov & Mavlyutov, Schepers, and Katz & Stapledon. The study of thin simplices was originally proposed by Gelfand, Kapranov and Zelevinsky, where in this case the local $h^*$-polynomial simply equals its so-called box polynomial. Our main results are the complete classification of thin polytopes up to dimension 3 and the characterization of thinness for Gorenstein polytopes. The paper also includes an introduction to the local $h^*$-polynomial with a survey of previous results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源