论文标题

半导体自旋与难以区分的光子之间的高速纠缠

High-rate entanglement between a semiconductor spin and indistinguishable photons

论文作者

Coste, N., Fioretto, D., Belabas, N., Wein, S. C., Hilaire, P., Frantzeskakis, R., Gundin, M., Goes, B., Somaschi, N., Morassi, M., Lemaître, A., Sagnes, 1 I., Harouri, A., Economou, S. E., Auffeves, A., Krebs, O., Lanco, L., Senellart, P.

论文摘要

光子图状态,多个光子相互纠缠的量子光状态是光学量子技术的关键资源。它们尤其是基于错误校正测量的光学量子计算和全光量子网络的核心。在离散变量框架中,这些应用需要高效率的群集群,其淋巴结是无法区分的光子。这种光子簇状态可以用预示的单光子源和概率量子门产生,但具有挑战性的效率和可扩展性。已经提出了自旋光子纠缠来确定生成线性簇状态。通过半导体旋转获得了高光子不可或缺的情况,并且最近以高收集效率和创纪录长度的原子系统获得了首次演示。在这里,我们报告了由一个半导体自旋和两个难以区分的光子制成的三个部分簇状态的有效产生。我们利用插入光腔中的半导体量子点进行有效的光子收集,并通过电气控制高度无法区分。我们展示了两个和三个粒子纠缠,其保真度分别为80%和63%,而光子的性能不可区别为88%。自旋光子和自旋 - 光子 - 光子纠缠率分别超过了三个和两个数量级。我们的系统和实验方案是一种由资源有效的简单实验配置控制的单片固态设备,对于将来的可扩展应用程序非常有前途。

Photonic graph states, quantum light states where multiple photons are mutually entangled, are key resources for optical quantum technologies. They are notably at the core of error-corrected measurement-based optical quantum computing and all-optical quantum networks. In the discrete variable framework, these applications require high efficiency generation of cluster-states whose nodes are indistinguishable photons. Such photonic cluster states can be generated with heralded single photon sources and probabilistic quantum gates, yet with challenging efficiency and scalability. Spin-photon entanglement has been proposed to deterministically generate linear cluster states. First demonstrations have been obtained with semiconductor spins achieving high photon indistinguishablity, and most recently with atomic systems at high collection efficiency and record length. Here we report on the efficient generation of three partite cluster states made of one semiconductor spin and two indistinguishable photons. We harness a semiconductor quantum dot inserted in an optical cavity for efficient photon collection and electrically controlled for high indistinguishability. We demonstrate two and three particle entanglement with fidelities of 80 % and 63 % respectively, with photon indistinguishability of 88%. The spin-photon and spin-photon-photon entanglement rates exceed by three and two orders of magnitude respectively the previous state of the art. Our system and experimental scheme, a monolithic solid-state device controlled with a resource efficient simple experimental configuration, are very promising for future scalable applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源