论文标题

化学反应基序在相位分离材料中驱动非平衡行为

Chemical reaction motifs driving non-equilibrium behaviors in phase separating materials

论文作者

Osmanovic, Dino, Franco, Elisa

论文摘要

夫妇与该相分开的系统的化学反应与从生物学到材料科学的各种环境有关。但是,一组特定的化学反应(化学反应网络,CRN)如何影响相分离系统的行为,很难在理论上完全预测。在本文中,我们分析了一个平均场理论将CRN耦合到相位分离材料并阐述CRN的性质如何影响不同类别的非平衡行为:麦克相分离或时间振荡模式的出现。我们通过首先考虑可拖动问题并说明导致微相分离的数学条件,研究了实现微相分离冷凝物的问题。然后,我们通过检查随机生成的网络和参数来识别可能产生大小控制的CRN图案。通过分析观察特定状态的概率,我们定义了CRN的简单设计规则,从而导致所需的非平衡行为。我们表明,产生负反馈的化学相互作用促进了显微相机的分离,此外,我们证明,由于挫败感,对于具有两个或四个组件的系统,对于微相分离的出现而言,参数很重要。我们的结果为设计自我调节的材料CRN的设计提供了指导,并提供了管理隔室的形成,解散和组织的说明。

Chemical reactions that couple to systems that phase separate have been implicated in diverse contexts from biology to materials science. However, how a particular set of chemical reactions (chemical reaction network, CRN) would affect the behaviors of a phase separating system is difficult to fully predict theoretically. In this paper, we analyze a mean field theory coupling CRNs to phase separating materials and expound on how the properties of the CRNs affect different classes of non-equilibrium behaviors: the emergence of microphase separation or of temporally oscillating patterns. We examine the problem of achieving microphase separated condensates by first considering tractable problems and illustrating the mathematical conditions leading to microphase separation. We then identify CRN motifs that are likely to yield size control by examining randomly generated networks and parameters. By analyzing the probabilities to observe particular states, we define simple design rules of CRNs that lead to desired non-equilibrium behavior. We show that chemical interactions generating negative feedback facilitate microphase separation, moreover, we demonstrate that the parameters important for the emergence of microphase separation differ for systems with two or four components, due to frustration. Our results provide guidance toward the design of self-regulating material CRNs and provide instructions to manage the formation, dissolution, and organization of compartments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源