论文标题
拓扑全息图:统一Landau和Beyond-Landau物理学
Topological Holography: Towards a Unification of Landau and Beyond-Landau Physics
论文作者
论文摘要
我们概述了一个全息框架,该框架试图统一Landau和量子阶段和相变的范围。该框架利用对对称性的现代理解作为拓扑缺陷/操作员,使用拓扑顺序,以一个较低的维度在一个全球对称性中组织量子系统的空间。全球对称性自然是拓扑顺序的输入。特别是,我们全息构建一个字符串运算符代数(SOA),该字符串是在一个较低维度中具有给定对称$ g $的对称量子系统的构建块。这揭示了巨大的二元性网络,这些双重性在$ g $ - $对称量子系统的空间上。 SOA促进了间隙阶段的分类及其相应的顺序参数和基本激励,而二元性有助于导航和预测相图的各个角度,并分析地计算相变的普遍性类别。这种方法的一种新颖性是,它在平等的基础上处理常规的兰道和非常规拓扑相变,从而提供了这些看似偏见的理解领域的全息统一。我们发现了间隙阶段及其多临界点的新特征,即我们将其配置为融合结构,该功能编码了有关哪些阶段和过渡可以彼此双重的信息。此外,我们发现自偶联系统通常会出现不可粘的,即超越群体般的对称性。我们使用有限的Abelian组对称性将这些想法应用于$ 1+1D $量子旋转链,并使用拓扑订购的系统$ 2+1d $。我们预测了各种混凝土自旋模型的相图,并通过分析计算非平凡量子相变的完整共形光谱,然后我们通过数值验证。
We outline a holographic framework that attempts to unify Landau and beyond-Landau paradigms of quantum phases and phase transitions. Leveraging a modern understanding of symmetries as topological defects/operators, the framework uses a topological order to organize the space of quantum systems with a global symmetry in one lower dimension. The global symmetry naturally serves as an input for the topological order. In particular, we holographically construct a String Operator Algebra (SOA) which is the building block of symmetric quantum systems with a given symmetry $G$ in one lower dimension. This exposes a vast web of dualities which act on the space of $G$-symmetric quantum systems. The SOA facilitates the classification of gapped phases as well as their corresponding order parameters and fundamental excitations, while dualities help to navigate and predict various corners of phase diagrams and analytically compute universality classes of phase transitions. A novelty of the approach is that it treats conventional Landau and unconventional topological phase transitions on an equal footing, thereby providing a holographic unification of these seemingly-disparate domains of understanding. We uncover a new feature of gapped phases and their multi-critical points, which we dub fusion structure, that encodes information about which phases and transitions can be dual to each other. Furthermore, we discover that self-dual systems typically posses emergent non-invertible, i.e., beyond group-like symmetries. We apply these ideas to $1+1d$ quantum spin chains with finite Abelian group symmetry, using topologically-ordered systems in $2+1d$. We predict the phase diagrams of various concrete spin models, and analytically compute the full conformal spectra of non-trivial quantum phase transitions, which we then verify numerically.