论文标题
神经:自主3D重建的神经不确定性,具有隐式神经表示
NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction with Implicit Neural Representations
论文作者
论文摘要
隐式神经表示已在离线3D重建中显示出令人信服的结果,并且最近也证明了在线大满贯系统的潜力。但是,将它们应用于自主3D重建中,在该自动3D重建中,尚未研究机器人探索场景并计划重建的视图路径。在本文中,我们首次探讨了通过解决两个关键挑战来使用隐式神经表示进行自主3D场景重建的可能性:1)寻求标准来衡量基于新表示形式的视图计划的候选观点质量,以及2)2)从数据中学习标准,可以从数据中学习到不同的场景,而不是一个可以概括的场景,而不是一个手动掌握的标准。为了解决挑战,首先提出了峰值信噪比(PSNR)的代理来量化观点质量。其次,代理与场景隐式神经网络的参数共同优化。通过提出的视图质量标准来自神经网络(称为神经不确定性),我们可以将隐式表示形式应用于自主3D重建。我们的方法证明了与使用TSDF或重建的变体相比,在没有视图计划的情况下,相比,在渲染的图像质量和重建3D模型的几何质量方面,各种指标表现出显着改进。项目网页https://kingteeloki-ran.github.io/neurar/
Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems. However, applying them to autonomous 3D reconstruction, where a robot is required to explore a scene and plan a view path for the reconstruction, has not been studied. In this paper, we explore for the first time the possibility of using implicit neural representations for autonomous 3D scene reconstruction by addressing two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of a hand-crafting one. To solve the challenges, firstly, a proxy of Peak Signal-to-Noise Ratio (PSNR) is proposed to quantify a viewpoint quality; secondly, the proxy is optimized jointly with the parameters of an implicit neural network for the scene. With the proposed view quality criterion from neural networks (termed as Neural Uncertainty), we can then apply implicit representations to autonomous 3D reconstruction. Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning. Project webpage https://kingteeloki-ran.github.io/NeurAR/