论文标题
双曲线表面的Uryson宽度和裤子分解
Uryson width and pants decompositions of hyperbolic surfaces
论文作者
论文摘要
假设$ m $是属$ g $和$ n $ cusps的双曲线表面。然后,我们可以找到由简单封闭的大地测量学组成的$ m $的裤子分解,以便每条曲线最多包含在直径的球中,最多$ c \ sqrt {g + n} $,其中$ c $是通用常数。
Suppose that $M$ is a hyperbolic surface of genus $g$ and with $n$ cusps. Then we can find a pants decomposition of $M$ composed of simple closed geodesics so that each curve is contained in a ball of diameter at most $C\sqrt{g + n}$, where $C$ is a universal constant.