论文标题

代表性道德模型校准

Representational Ethical Model Calibration

论文作者

Carruthers, Robert, Straw, Isabel, Ruffle, James K, Herron, Daniel, Nelson, Amy, Bzdok, Danilo, Fernandez-Reyes, Delmiro, Rees, Geraint, Nachev, Parashkev

论文摘要

股权被广泛认为是医疗保健道德的基础。在临床决策的背景下,它取决于智力的比较忠诚(基于证据或直观的)指导每个患者的管理。尽管当代机器学习的个性化力量最近引起了人们的关注,但这种认知公平是在任何决策指导的背景下,无论是传统还是创新的。然而,目前没有一般的量化框架,更不用说保证了。在这里,我们根据模型的忠诚度来制定认知公平性,这些模型是对所学的多维代表性评估的,这些身份的多维表示旨在最大程度地提高人口的捕获多样性,从而引入了代表性道德模型校准的全面框架。我们证明了该框架在来自英国生物库的大规模多模式数据上使用框架来得出人口的多样化表示,量化模型绩效并提出了响应良好的补救。我们提供方法作为量化和确保医疗保健认知公平的原则解决方案,并在整个研究,临床和监管领域中进行了应用。

Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源