论文标题
将经典的控制技术应用于量子系统:纠缠与稳定性边缘和其他限制
Applying classical control techniques to quantum systems: entanglement versus stability margin and other limitations
论文作者
论文摘要
稳健量子控制的开发一直具有挑战性,并且在量子系统中应用经典的稳健控制有许多障碍,包括双线性,边际稳定性,状态准备误差,非线性功绩数字。对于封闭量子系统不满足的边际稳定性的需求对于林语行为导致非自动进化并允许非零的经典稳定性边缘的开放量子系统可以满足封闭量子系统的需求,但是当将经典的强大控制工具应用于这些系统时,很难提取物理洞察力。我们考虑了两个量子位的纠缠量的直接示例,这是两个量子的耗散耦合到有损腔的词,并使用经典稳定性边缘和结构性扰动对其进行了分析。我们尝试在可能的情况下从这些分析中提取物理见解。我们的目的是突出显示经典的稳健控制可以帮助分析量子系统,并确定需要做更多工作以开发特定方法来开发量子稳健控制的领域。
Development of robust quantum control has been challenging and there are numerous obstacles to applying classical robust control to quantum system including bilinearity, marginal stability, state preparation errors, nonlinear figures of merit. The requirement of marginal stability, while not satisfied for closed quantum systems, can be satisfied for open quantum systems where Lindbladian behavior leads to non-unitary evolution, and allows for nonzero classical stability margins, but it remains difficult to extract physical insight when classical robust control tools are applied to these systems. We consider a straightforward example of the entanglement between two qubits dissipatively coupled to a lossy cavity and analyze it using the classical stability margin and structured perturbations. We attempt, where possible, to extract physical insight from these analyses. Our aim is to highlight where classical robust control can assist in the analysis of quantum systems and identify areas where more work needs to be done to develop specific methods for quantum robust control.