论文标题

最大重量凸层

Maximum Weight Convex Polytope

论文作者

Abam, Mohammad Ali, Lavasani, Ali Mohammad, Pankratov, Denis

论文摘要

我们研究了最大重量凸多物质问题,其中的目标是找到一个凸多物件,从而最大程度地提高了封闭点的总重量。在这项工作之前,此问题的唯一已知结果是$ O(n^3)$算法的$ 2 $尺寸,因为Bautista等人。我们表明,问题变成了$ \ Mathcal {np} $ - 难以在$ 3 $尺寸中完全解决,而$ \ Mathcal {np} $ - 对于任何$ n^{1/2-ε} $在$ 4 $或更多尺寸的$ n^{1/2-ε} $中很难近似。 %\ polyapx complete $ 4 $尺寸,即使有二进制重量。我们还以$ 2 $尺寸的价格给出了一种新算法,尽管它具有与Bautsita等人的算法相同的$ O(n^3)$运行时间复杂性。

We study the maximum weight convex polytope problem, in which the goal is to find a convex polytope maximizing the total weight of enclosed points. Prior to this work, the only known result for this problem was an $O(n^3)$ algorithm for the case of $2$ dimensions due to Bautista et al. We show that the problem becomes $\mathcal{NP}$-hard to solve exactly in $3$ dimensions, and $\mathcal{NP}$-hard to approximate within $n^{1/2-ε}$ for any $ε> 0$ in $4$ or more dimensions. %\polyAPX-complete in $4$ dimensions even with binary weights. We also give a new algorithm for $2$ dimensions, albeit with the same $O(n^3)$ running time complexity as that of the algorithm of Bautsita et al.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源