论文标题
近晶密度方程的有限元离散化
Finite-element discretization of the smectic density equation
论文作者
论文摘要
建模晶晶晶体的密度变化的四阶PDE在其(数值)分析中提出了独特的挑战,而不是更常见的四阶操作员,例如经典的Biharmonic。尽管操作员是正定的,但该方程式具有“错误的符号”偏移,使其更类似于无限期的Helmholtz操作员,其具有最低的能量模式由平面波组成。结果,对于大变化,自然的连续性,训练和INF-SUP常数会大大降解,从而影响标准误差估计。在本文中,我们根据$ h^2 $传统的元素,$ C^0 $内部惩罚方法和一种混合有限元元素配方,分析和比较了此类PDE的三种有限元元素公式,这些配方明确引入了解决方案梯度和Lagrange Multiplieler的近似值。符合方法很简单,但在三个维度上应用是不切实际的。内部培训方法在两个和三个维度上很好地效果很好,但具有低阶收敛性,并且(在初步实验中)似乎很难前提。混合方法使用了更多的自由度,但在两个和三个维度上都可以很好地工作,并且可以适合整体式多移民预处理。我们的分析揭示了误差界限与不同方案的移位参数和网格大小的不同行为。数值结果验证了所有离散化的有限元融合,并说明了三个方案之间的权衡。
The fourth-order PDE that models the density variation of smectic A liquid crystals presents unique challenges in its (numerical) analysis beyond more common fourth-order operators, such as the classical biharmonic. While the operator is positive definite, the equation has a "wrong-sign" shift, making it somewhat more akin to an indefinite Helmholtz operator, with lowest-energy modes consisting of plane waves. As a result, for large shifts, the natural continuity, coercivity, and inf-sup constants degrade considerably, impacting standard error estimates. In this paper, we analyze and compare three finite-element formulations for such PDEs, based on $H^2$-conforming elements, the $C^0$ interior penalty method, and a mixed finite-element formulation that explicitly introduces approximations to the gradient of the solution and a Lagrange multiplier. The conforming method is simple but is impractical to apply in three dimensions; the interior-penalty method works well in two and three dimensions but has lower-order convergence and (in preliminary experiments) seems difficult to precondition; the mixed method uses more degrees of freedom, but works well in both two and three dimensions, and is amenable to monolithic multigrid preconditioning. Our analysis reveals different behaviours of the error bounds with the shift parameter and mesh size for the different schemes. Numerical results verify the finite-element convergence for all discretizations, and illustrate the trade-offs between the three schemes.