论文标题

通过嵌入自适应上的日期和超级级表示,逐渐射击语义分割

Incremental Few-Shot Semantic Segmentation via Embedding Adaptive-Update and Hyper-class Representation

论文作者

Shi, Guangchen, Wu, Yirui, Liu, Jun, Wan, Shaohua, Wang, Wenhai, Lu, Tong

论文摘要

逐渐射击的语义分割(IFSS)目标以逐步扩展模型的能力分割新的图像类别的能力,仅由几个样本监督。但是,旧课程中学到的特征可能会大大漂移,从而导致灾难性遗忘。此外,在新课程中,很少有像素级细分的样本会导致每个学习课程中臭名昭著的过度拟合问题。在本文中,我们明确表示基于类别的语义分割的知识作为类别嵌入和超级类嵌入,前者描述了独家的语义属性,而后者则表示超级类知识作为类共享语义属性。为了解决IFSS问题,我们提出了EHNET,即从两个方面嵌入自适应更高和超级级表示网络。首先,我们提出了一种嵌入自适应上升的策略,以避免特征漂移,该策略通过超级级表示来维持旧知识,并使用类似课程的方案自适应地更新类别嵌入,以涉及在各个会话中学习的新课程。其次,为了抵制很少的培训样本引起的过度拟合问题,通过将所有类别嵌入以进行初始化并与新班级的类别嵌入以进行增强,从而学习了超级级别的嵌入,从而使学习的知识有助于学习新知识,从而减轻培训绩效的依赖性。值得注意的是,这两种设计为具有足够语义和有限偏见的类提供了表示能力,从而可以执行需要高语义依赖性的分割任务。 Pascal-5i和可可数据集的实验表明,EHNET具有出色的优势实现新的最新性能。

Incremental few-shot semantic segmentation (IFSS) targets at incrementally expanding model's capacity to segment new class of images supervised by only a few samples. However, features learned on old classes could significantly drift, causing catastrophic forgetting. Moreover, few samples for pixel-level segmentation on new classes lead to notorious overfitting issues in each learning session. In this paper, we explicitly represent class-based knowledge for semantic segmentation as a category embedding and a hyper-class embedding, where the former describes exclusive semantical properties, and the latter expresses hyper-class knowledge as class-shared semantic properties. Aiming to solve IFSS problems, we present EHNet, i.e., Embedding adaptive-update and Hyper-class representation Network from two aspects. First, we propose an embedding adaptive-update strategy to avoid feature drift, which maintains old knowledge by hyper-class representation, and adaptively update category embeddings with a class-attention scheme to involve new classes learned in individual sessions. Second, to resist overfitting issues caused by few training samples, a hyper-class embedding is learned by clustering all category embeddings for initialization and aligned with category embedding of the new class for enhancement, where learned knowledge assists to learn new knowledge, thus alleviating performance dependence on training data scale. Significantly, these two designs provide representation capability for classes with sufficient semantics and limited biases, enabling to perform segmentation tasks requiring high semantic dependence. Experiments on PASCAL-5i and COCO datasets show that EHNet achieves new state-of-the-art performance with remarkable advantages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源