论文标题
单眼3D对象检测与运动深度
Monocular 3D Object Detection with Depth from Motion
论文作者
论文摘要
鉴于与多传感器设置相比,从单眼输入中感知的3D对象对于机器人系统至关重要。它非常困难,因为单个图像无法提供预测绝对深度值的任何线索。通过双眼方法进行3D对象检测,我们利用了相机自我动作提供的强几何结构来进行准确的对象深度估计和检测。我们首先对这个一般的两种视图案例进行了理论分析,并注意两个挑战:1)来自多个估计的累积错误,这些估计使直接预测棘手; 2)由静态摄像机和歧义匹配引起的固有难题。因此,我们建立了具有几何感知成本量的立体声对应关系,作为深度估计的替代方案,并以单眼理解进一步补偿了它,以解决第二个问题。我们的框架(DFM)命名为深度(DFM),然后使用已建立的几何形状将2D图像特征提升到3D空间并检测到3D对象。我们还提出了一个无姿势的DFM,以使其在摄像头不可用时可用。我们的框架在Kitti基准测试上的优于最先进的方法。详细的定量和定性分析也验证了我们的理论结论。该代码将在https://github.com/tai-wang/depth-from-motion上发布。
Perceiving 3D objects from monocular inputs is crucial for robotic systems, given its economy compared to multi-sensor settings. It is notably difficult as a single image can not provide any clues for predicting absolute depth values. Motivated by binocular methods for 3D object detection, we take advantage of the strong geometry structure provided by camera ego-motion for accurate object depth estimation and detection. We first make a theoretical analysis on this general two-view case and notice two challenges: 1) Cumulative errors from multiple estimations that make the direct prediction intractable; 2) Inherent dilemmas caused by static cameras and matching ambiguity. Accordingly, we establish the stereo correspondence with a geometry-aware cost volume as the alternative for depth estimation and further compensate it with monocular understanding to address the second problem. Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon. We also present a pose-free DfM to make it usable when the camera pose is unavailable. Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark. Detailed quantitative and qualitative analyses also validate our theoretical conclusions. The code will be released at https://github.com/Tai-Wang/Depth-from-Motion.